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SECTION I

INTRODUCTION

Much has been heard about the advantages of advanced composite

materials which accrue because of their high specific stiffness and

strength, excellent damage tolerance, and superior fatigue response

characteristics, as well as their corrosion resistance in hostile

environments. Laminated composites are in increasing demand, because

they can actually be tailored by the design engineer to suit almost

any particular application. These laminates are fabricated by stack-

ing up plies or laminae of unidirectional fibrous composites, with

each lamina oriented in different directions to achieve the required

stiffness and strength.

With the increased use of laminated composites, analytical tools

are needed for the prediction of the laminate behavior. The so-called

classical laminated plate theory has long been used by many designers

to predict laminate response. Occasionally, others have used finite

difference or two-dimensional finite element methods to predict the

laminate response. These methods, however, arv limited in their

capabilities. The classical laminated plate theory, for example,

neglects certain stress components which experimental observations

have shown to play an important role in failure of laminated

composites. Experimental observations have also shown that many

laminated composites exhibit significant amounts of inelastic
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behavior, and that yielding of a ply or lamina within a laminate does

not mean failure of the laminate. Approximate methods typically

neglect this inelastic behavior. Furthermore, the effect of changes

in temperature and moisture on the material properties is usually

neglected in these analyses.

In the present work, the full three-dimensional problem of

laminated composites has been addressed. A plasticity model that

takes into account the effect of varying material properties due to

temperature and moisture changes has been developed to describe the

inelastic behavior of the laminate in three-dimensional space. This

model has been developed in such a way as to make it possible to

incorporate it in a three-dimensional finite element analysis. A

computer program has been developed for the implementation of the

analysis. Both mechanical and hygrothermal loading conditions can be

handled by this three-dimensional elastoplastic finite element

program.

In Section 2, an historical background of the analysis of compo-

site laminates is presented. The classical theory of laminated

plates and other analytical methods are reviewed. Linear and

nonlinear approximate analyses cited in the literature are also

discussed and studies of thermal stresses and interlaminar stresses

are presented.

In Section 3, the concepts of yield criterion, hardening rule,

and flow rule are examined in view of previous studies in the

literature. A plasticity model that accounts for varying temperature
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and moisture content, and leads to a stiffness concept suitable for

use in a three-dimensional finite element analysis, is then developed.

Finally, the finite element analysis and the main features of the

associated computer code, developed as the tool for this work, are

discussed. Example problems are presented with results and discussion

in Section 4, and a general discussion, summary, and suggestions for

future work are included in Section 5.

_ , _ , . , -... .. -- ---_ -- -.. ...... .... ... ... ... .... .. . ... ...... ..2 12 _' 1.1



SECTION 2

LITERATURE REVIEW

2.1 Linear Analyses

Tsai [1] was among the first investigators to apply the classi-

cal laminated plate theory to composite materials. The classical

laminated plate theory (LPT) that he presented in 1964 is based on the

work by Reissner and Stavsky [2] in 1961. Even earlier works, such

as that of Smith [3] published in 1953, should also be considered to

have contributed to the development of the laminated plate theory.

Smith assumed plane stress conditions in his work on orthotropic

plywood. A detailed description of the laminated plate theory is

given in Reference [4]. The work by Tsai [1] is a point stress

analysis in that it does not take into account boundary conditions.

Ashton and Whitney [5] applied LPT to the problem of laminated plates

and presented solutions that satisfied the boundary conditions for

specially orthotropic plates, i.e., laminated plates composed of

orthotropic layers such that the orthotropic axes of symmetry of

each layer coincide with the geometric axes of the plate. This type

of laminate does not exhibit coupling between the bending moment

resultants and the twisting curvatures.

Although thermal loading is handlea by the laminated plate

theory, to date few attempts [6] have been made to consider varying

material properties due to temperature, and none for humidity

changes. Also a significant limitation of LPT is that it cannot
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consider the out-of-plane stresses which, as will be seen later in

this chapter, have proven to be of great importance in the analysis

of composite materials. Some computer codes based on LPT are still

widely used, e.g., AC3 [71 and SQ5 [8].

Tsai [1] developed an analytical method to predict the elastic

constants of a lamina based upon the properties of the fibers and the

matrix material. Then, using the laminated plate theory, he

theoretically predicted the elastic constants of laminates made of

glass/epoxy plies. With the aid of an experimental technique, Azzi

and Tsai [9] were able to show good agreement between the analytical

predictions and experimental results for glass/epoxy composites.

Hill's yield condition [10] for orthotropic materials under plane

stress conditions was employed to predict laminate failure in an

analytical study Ill] of the strength of transversely isotropic lami-

nates. Inelastic behavior was not included in this study, however.

In 1965, Tsai [12] considered both mechanical and thermal

loading in his method for modeling the load transfer from one lamina

as it failed to the remaining unfailed laminae. Lamina failure was

predcited using Hill's plane stress yield condition 110]. After the

failure of a lamina, the stiffness matrix was degraded by setting

the appropriate elastic constants to a small fraction of their

original values. However, all laminae were assumed to remain

linearly elastic to failure.

The concept of a stepwise reduction in load carrying capacity

after a lamina reached initial yielding according to Hill',. yield
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condition was used by Chiu [13]. He noted that failure in one

direction of a certain lamina did not imply total failure of this

particular lamina, or failure of the laminate. Out-of-plane stresses

were not included in this study, however, and no account was made

for hygrothermal effects.

In 1967, Hoffman [14] proposed a failure criterion similar to

Hill's [10] yield condition. His theory contained linear terms and

hence could account for differing tensile and compressive properties.

Good agreement between theory and experiment for the ultimate

strength of laminates was shown for uniaxial tensile and compressive

tests; no account was made of the initial thermal stresses which are

induced during the fabrication of composite materials, due to the

cooldown from high curing temperatures.

In 1971, Tsai and Wu [15] proposed a general strength criterion

for anisotropic materials. They employed an analytical method that

assumed the stress-strain curve to be elastic to failure. Limited

uniaxial experiments showed good agreement with theoretical predic-

tions for ultimate strength of graphite/epoxy. This strength theory

and others will be discussed in more detail when yield surfaces are

considered in the next chapter.

During the fabrication of composite laminates, residual thermal

stresses are induced due to cooldown from the cure temperature. The

important effect of these thermally-induced stresses has long been

recognized in studies of unidirectional composites, by investigators

such as Adams and Doner [161, Foye 1171, and Miller and Adams 11,19].

Aft
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However, in spite of this activity, in 1974 Hahn and Pagano [6] noted

that no method was yet available that would account for these

stresses in composite laminates. They developed a method based on

total stress-strain-temperature relations. Strains were assumed to

consist of thermal strains and mechanical strains,with the latter

depending also on temperature. Material stiffnesses were assumed to

depend only linearly on temperature. By employing the laminated

plate theory, however, they carried along all its limitations

explained earlier. Their method did not consider nonlinear material

effects.

2.2 Nonlinear Analyses

Throughout this work, the terms nonlinear elast fc, inelastic,

and elastoplastic will be used to describe material response. Non-

linear or nonlinear elastic behavior implies that unloading from any

state of stress is assumed to follow the stress-strain curve, I.e.,

no permanent deformation occurs. Inelastic is used to describe the

material behavior beyond its elastic limit. The term elastoplastic

is used to describe materials which exhibit plastic (time-independent)

deformations beyond the elastic limit.

With the development of high modulus fibers in the early lq60's,

and hence the so-called advanced composites, the use of composites

increased sharply. To be able to fully utilize these new materials,

a full and complete understanding of their behavior was needed.

Among many other needs, this increased the demand for nonlinear

analyses.

.
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An early attempt was that of Petit and Waddoups [20] in 1969.

The laminate behavior was established by a piecewise linear approach,

and incremental application of average laminate stresses. At each

increment of load, the incremental strains were determined and added

to previous strains to determine the total strains in each lamina.

These were then transformed to the principal directions of the lamina.

Lamina principal strains were then referred back to the respective

stress-strain curves, which were composed of linear segments, and

updated stiffnesses were determined for the next load increment.

Failure was assumed to occur when a principal strain reached a

corresponding ultimate value in any lamina. Inelastic material

behavior was not considered, however. No accounting of thermal

effects was made, and being a two-dimensional analysis, the important

role of out-of-plane stresses on failure mode could not be handled.

In a similar analysis by Hashin, et. al. [211, the Ramberg-Osgood

equation [22] was used to represent the lamina stress-strain curves,

this being a three-parameter curve-fit equation.

Cubic spline interpolation curve-fit functions were employed by

Sandhu [23] to model the lamina stress-strain curves. Incremental

loading was used, the material properties beiug updated each incre-

ment using equivalent strains. Sandhu proposed that It was erroneous

to determine updated material properties after each loading increment

based on the individual lamina strains, as in the work of Petit and

Waddoups [201. He assumed that the incremental stresses could be

related to the incremental strains. The ultimate load carrying
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capacity of tle laminate was determined by the plywise application

of a failure criterion which assumed that the train energies under

longitudinal, transverse and shear loadings wtre indeperideut

parameters. Better agreement between theory ;jil experivin t or

various boron/epoxy laminates than that reported by Petit and

Waddoups [201 was also indicated. Sandhu did not casidcr IIV1-

thermal loading in his analysis, and no yield critrion ws

i.e., inelastic effects were neglected.

Nonlinear behavior of laminated fibrous composites including

thermal effects and temperature-dependent material properties was

con,;idered in a study by Renieri and HerakoviCli [241. Using a two-

dimensional finite element analysis and limiting the hoading condi-

tions to uniaxial mechanical loading, they studied both nonlinear

and thermal effects. They showed that these effects are important

in the prediction of failure modes in compositC laminates, and noted

that laminate failure is a function of the laminate configurntion,

material, and type of loading. Unloading was assumed to fol Iw

the stress-strain curve. No yield criterion was used in this two-

dimensional analysis, i.e., inelastic behavior was neglected, n.10

failure was assumed when any of the strains in the priicip;l

directions of the material reached Its ultimat, valtic. Ie an vs ie

was also restricted to symmetric liminat,,s.

2.3 Interlaminar Stresses

A chare,'tristic of laminated composites is th'it unht ii- in

unlaxlal or biaxial loading conditions, a .lamin.tt ,ft, T lee v,1';
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triaxial effects, i.e., a laminate under in-plane loading only will

often, depending on its lay-up, develop out-of-plane stresses.

These out-of-plane stresses are termed interlaminar stresses. Their

effect is most significant near free edges where they attain high

values.

Plane stress conditions assumed in the classical laminated plate

theory do not allow for the calculation of interlaminar stresses.

Rather, only the stresses in the plane of the laminate are considered.

The laminated plate theory is thus incapable of providing predictions

of some of the stresses that actually cause failure of composite

laminates, as shown by experimental evidence [25]. In fact, inter-

laminar stresses are one of the mechanisms that uniquely characterize

failure in composite laminates. These stresses may cause delamination

near a free edge, whether it be at the edge of a plate, around a

hole, etc. Their effect near an edge is known as the free edge

effect.

In an effort to evaluate interlaminar stresses and the influence

of the stacking sequence on laminate strength under uniform axial

loading, Pipes and Pagano [261 used a finite difference technique.

Their/study was limited to angle-ply laminates, i.e., laminates with

an even number of layers, with each lamina or ply alternately

oriented at +0 and -0 to one of the geometric axes in the plane of

the laminate. They noted that significant interlaminar shear stresses

were required to allow shear transfer between the plies of the lami-

nate. In addition, the interlaminar normal stress was found to be an



edge effect, restricted to a region near the free edge approximately

equal to the laminate thickness. They reported strong evidence of a

singularity in interlaminar normal stress at the intersection of an

interface and the free edge. They also suggested that such high

stresses in the neighborhood of the free edge may be expected to

cause delamination of the laminate, in particular under fatigue

loadings. Experimental observations of this phenomenon had been

reported earlier by Foye and Baker [271. Similar results were also

reported by Pipes and Daniel [281, in their work on graphite/epoxy.

Interlaminar stress results for cross-ply graphite/epoxy laminates,

i.e., laminates with alternating 0' and 90' plies, and other laminate

configurations, subjected to uniform axial strain loading are

reported in Reference (29].

Finite difference and finite element methods [30-421 both have

been used to determine the interlaminar stresses due to in-plane

loading of laminates. Relatively little work has been done to

determine these stresses due to hygrothermal loading or nonlinear

effects, in spite of their importance.

Among the first to use a finite element analysis to determine

interlaminar stresses were Puppo and Evensen [301, and lsakson and

Levy [31]. Those investigators assumed plane stress conditions,

and the fibrous laminae were considered to be orthotropic layers

separated by isotropic laminae of finite thickness that developed

only interlaminar shear stresses. Due to the assumed plane stress

conditions, however, interlaminar normal stresses could not be
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modeled. This work and that of Reference [30] assumed linearly

elastic material behavior. Levy, et. al. [32], extended the work of

lsakson and Levy [31] to include plastic deformation of the shear

layer, but due to the use of two-dimensional analysis and the assumed

plane stress conditions, they were again unable to handle the inter-

laminar normal stresses. These studies were also limited to

mechanical loadings.

Herakovich and Brooks [33] considered laminates in the elastic

range under uniform axial strain loading. They used a finite element

analysis [27], and finite element subsections at the free edge were

considered, i.e., the finite element solution was reapplied to smaller

sections near the free edge to obtain more detail in this region.

Relatively high interlaminar stresses at the free edge and at the

lamina interface were predicted. They also pointed out the signifi-

cance of the interlaminar stresses with respect to the applied loads

and the stacking sequence, and noted that the magnitude of the

interlaminar stresses could influence the strength of the laminate.

Again this analysis neglected nonlinear effects. To account for

the interlaminar normal stresses, a linearly elastic three-dimensional

finite element analysis was used by Rybicki [341. He was able to

consider both interlaminar shear and normal stresses. The effects

of stacking sequence2 were studied under mechanical loading only.

Very recently, Altus, et. al. [35], presented a three-dimensional

finite difference solution of the problem of free edge effects. Only

symmetric angle-ply laminates were considered in this linearly
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elastic analysis. The finite difference grid consisted 
of real

points inside the layer and fictitious points outside it to satisfy

the boundary conditions on the faces of each layer. This study

confirmed qualitatively that the normal interlaminar stresses

represent one of the most significant factors affecting failure

of laminates, a result which was also noted in previous studies

[36-401. These studies considered mechanical loadings only.

Results for edge effects under mechanical as well as thermal loadings

were reported by Wang and Crossman [41,42]. The material properties

were assumed not to vary with temperature in their study, however.

Rybicki and Schmueser [43] studied the effect of stacking

sequence and lay-up angle on free edge stresses around a hole in a

laminated plate under tension. A three-dimensional analysis was

used to determine the tangential strain distributions around circular

holes in composite laminates under uniaxial loading. Interlaminar

normal stress distributions around the free edge of the circular

hole, changes in stacking sequence, and lay-up angle were also

studied for different graphite/epoxy systems. They did not consider

nonlinear or inelastic material behavior, however.

in summary, although nonlinear effects in advanced composite

laminate systems, and both normal and shear interlaminar stresses,

have been recognized to be of major importance in the prediction of

laminate response to mechanical and hygrothermal loading conditions,

to date no rigorous, fully three-dimensional nonlinear analysis has

been developed. The aim of the present work is to do so.



SECTION 3

DEVELOPMENT OF ANALYSIS

Implicit in the development of any plasticity model are

assumptions associated with the behavior of the material. Several

of these assumptions will be employed in the present work; a discus-

sion of their implications follows.

3.1 Yield Criterion

The initial yield condition defining the elastic limit of the

material in a multiaxial stress state is referred to as the yield

surface or the yield criterion. A discussion of the ccncept of

yield surface is given in Reference [44].

The basic limitation of all present yield criteria is the lack

of sufficient experimental data to support the mathematical model by

which the yield surface is described. Phenomenological effects such as

hardening, strain history dependence, and the Bauschinger effect [101

are difficult to determine, and vary among different materials. The

Bauschinger effect accounts for having a different yield stress in

compression than in tension after reversing the stress vector from

ary tensile plastic stress state, and vice versa, as seen in Figure 1.

Since the exact role the Bauschinger effect plays in the behavior of

composite materials is still unknown, this effect is often neglected

in dealing with problems in plasticity. It will be neglected in the

present analysis also.
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Figure 1. Bauschinger Effect

Among the most frequently used yield criteria are those

attributed to Tresca [45] and von Mises [46]. The Tresca condition

states that inelastic action at any point in a body begins only when

the maximum shearing stress on some plane through the point reaches

a value equal to the maximum shearing stress in a uniaxial tension

specimen at yield. The more popular von Mises criterion [46] has been

extended to describe anisotropic materials [10,47-50]. In the work

by Yamada [48], the yield condition was assumed to be quadratic in

the stress components, and to reduce to the von Mises criterion when

• .
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the degree of anisotropy was small. The Hill yield criterion [10]

took the form

f(ak) = Nijoioj - I = 0 (1)
k ii

where N.. are constants related to the six yield stresses in the

principal anisotropic directions.

Implicit in Hill's criterion are:

1) The principal axes of anisotropy do not rotate during

plastic flow.

2) Orthotropic material behavior is assumed.

3) The principal axes of anisotropy either coincide with the

jprincipal stress axes or the transformation is known.

4) The anisotropic parameters N.. remain unchanged during

plastic flow.

Baltov and Sawczuk [51] generalized Hill's yield criterion to

include combined isotropic and kinematic hardening. (Both will be

presented in a later section). They assumed a form

f(ak) = Nij (a - l)(o - c.) - 1 = 0 (2)

where a and a are the kinematic hardening parameters. The aniso-

tropic parameters Nij are prescribed functions of the plastic strain,

and hence change during the course of plastic flow.

Several investigations have been concerned with defining a

strength criterion specifically for composite materials. A criterion

of this type is used as a failure surface or rondition in stress

"I . . .N |I. ... .
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space. When the stress state, expressed as some function of the

stress components, lies on this surface, it satisfies the failure

condition. That is, the material is assumed to have failed. These

surfaces could also be used to define yielding, if the parameters

describing such surfaces were expressed in terms of material yield

stresses instead of material ultimate strengths.

One criterion of the type described above is the Tsai-Hill

criterion [52]. In fact, this strength criterion is based on Hill's

yield criterion [10]. Tsai related the anisotropic parameters to the
u un

usual failure strengths oi, o2, and T of a lamina. For plane stress

conditions, it takes the form

2 2 2
01 02 1 2 12

1 + 2- + -1 (3)

u

Considerable interaction exists between the failure strengths ou, U2,

andu of this theory and those of other criteria which assume thatan 12

axial, transverse, and shear failures occur independently. A typical

element of a fibrous composite lamina is shown in Figure 2. The

three principal axes are: 1 in the direction of the fibers,

2 transversely in the plane, and 3 normal to the plane of the

lamina.

Another strength criterion was presented by Tsai and Wu 1151.

Their assumption was

f(ok) Nioi + N ij(3 1 1 (4)
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where Ni, Nij are strength tensors of the second and fourth order,

and are functions of independent material strengths. The linear term

in this form can be used to account for the difference between tensile

and compressive properties. Several features of this strength

criterion are:

1) It is a scalar equation and is invariant, i.e., interactions

between the stress components are independent material

properties.

2) Since the strength components are expressed as tensor

polynomials, their transformation relations and the associ-

ated invariants are well established.

3) Material axes can be rotated from N to N' and N to N'
1 1 ij ij

in Eq. (4), provided the transformation relations are known.

z,3

2

i Figure 2. Unidirectional Fibrous Lamina
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Although it seems physically attractive, some components in the

tensor polynomial require difficult and expensive biaxial testing for

their determination. Narayanaswami and Adelman [53] proposed a

modified criterion, based on the Tsai-Wu theory, in which terms

requiring biaxial testing were assumed zero. This criterion could

also be modified and used as a yield criterion.

3.2 Hardening Rule

The stress-strain response after initial yielding differs among

various materials, and it also differs among various plasticity

theories. This post yielding response, called hardening, is

described by specifying a subsequent yield surface, often termed

the loading surface or the hardening rule. An account of the various

hardening rules currently used is given by Armen [54].

The choice of a hardening rule will depend on its ability to

represent the hardening behavior of the material under consideration,

and upon the ease with which it can be applied. These requ irements,

together with the necessity of maintaining mathemat ica l cons isteucv

with tile yield function desc'ribed iii the previous section, constitute

the criterion for the stletioll of a hlardenIng rule.

Hill 1101 and Hodge 1551 proposed the isotropic hardening rule.

which assumed that during j),:sttC flow tht, loading Sur'faCe expanded

uniformly about the origin in stress space, tmiintaining tile same

shape, center and orientation as the viold surface. Figure I

illustrates the yield and loadi ug surfaces when tht stress state

shifts from point 1 to point 2. Unloading and subsequent reloading

-AW --
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in the reverse direction will result in yielding at the stress state

represented by point 3. The path 2-3 will be elastic, and 0-2 is

equal to 0-3. The isotropic representation of work hardening does

not account for the Bauschinger effect. Since fibrous composites

are strongly anisotropic, the directions of anisotropy remain

effectively unchanged during deformation. Thus, the isotropic work

hardening rule is suitable for these materials.

G 1

0

Z OADING CURVE

YIELD CURVE

Figure 3. Isotropic Hardening

The hardening behavior postulated in the theory of kinematic

hardening is due to Prager [56,57], and assumes that during plastic

deformation the loading surface translates in stress space, main-

taining the size, shape, and orientation of the yield surface. The

primary aim of this theory is to provide a means of accounting for

the Bauschinger effect. Figure 4 is an illustration of kinematic

hardening. The yield surface and loading surface are shown in this
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figure for a shift of the stress state from point I to point 2.

The translation of the center of the yield surface is denoted by ij"

0
1

eL 0'- 0
1.1

Figure 4. Kinematic Hardening

A model of combined kinematic and isotropic hardening, in which

the subsequent loading surfaces expand and translate, has been

presented by Hodge [581. However, since there are no published

experimental data that show that this model fits the behavior of

composites, its complexity does not justify its use. Other hardening

rules, proposed initially for metals, are discussed in References

159-631. To date, there is no universally applicable model to

describe all aspects of nonlinear material behavior. There are,

however, some models better suited to specific needs than others.

For a particular class of problems, the preferred model is that which

best combines mathematical and computational simplicity with a proper
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representation of experimentally 
observed behavior.

3.3 Flow Rule

Plastic strain increments are related to their corresponding

stress increments by means of a flow rule. A general approach for

determining a flow rule is the use of the concept of a plastic

potential. The assumption is made that there exists a scalar

function of stress f(o.j), from which the components of plastic

strain increment are proportional to aci. If f(o ij) represents

ij i

the yield surface in stress space, then the above assumption

represents a result of Drucker's postulate [64], which states that

the work done by an external agency during a complete cycle of

loading and unloading must be non-negative. Furthermore, this

assumption leads to an incremental or associated linear flow theory

of plasticity, in which the increment of plastic strain is in the

direction of the outward normal to the surface represented by f(ocj)

in stress space, at the current value of stress. A strain rate

vector deviating from the outward normal to the yield surface in a

direction independent of the stress rate vector constitutes the

nonassociated linear flow theories of plasticity. The nonassociated

flow theories are particularly suitable for work-softening materials

[651, and can reasonably fit the behavior observed in some soils.

An associated flow rule that is generally used to describe

elastic-plastic behavior is the Prandtl-Reuss relation, which is a

generalization of the Levy-Mises equations. The Prandtl-Reuss

It
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assumption is that the plastic strain increments, djarep oiaepropor-

tional to the corresponding stress deviator, a' where the

instantaneous non-negative value of the constant of proportionality

is dependent on the work hardening. The concept of an effective

stress and effective plastic strain [66] is in itself an assumption

that is usually introduced to reduce the complexity of a multiaxial

situation to one that can be related to uniaxial behavior. Thus,

the proportionality parameter can be the ratio of the effective

stress to the effective plastic strain increment.

3.4 Stiffness Concept

The three-dimensional problem of laminates of fibrous composites

will be formulated and analyzed. The stiffness concept that leads

to the finite element analysis will then be discussed in relation to

the solution of elastoplastic problems in three-dimensional space.

A transversely isotropic unidirectional composite lamina will be

assumed. If the three principal axes of anisotropy are taken to be;

I in the direction of the fibers, 2 transversely in the plane, and

3 normal to the plane of the lamina, as shown in Figure 2, the 2-3

plane will be the plane of transverse isotropy. As discussed earlier,

the directions of anisotropy will not change during deformation. A

quadratic form in the six components of stress, similar to Hill's

yield condition [10], can then be chosen in the form
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3)2+ G - )2 02

2 f(o i) = F (o 2  - + 2 + 3 - oi) + H (a - 2

2 33 11 2

(5)
2 2+2L +2M T + 2N T I
23 31 12

where F, G, H, L, M, and N are parameters characteristic of the

current state of anisotropy.

In the present study, the parameters of anisotropy are allowed

to vary with changes in temperature and/or moisture content. It can

easily be shown [10] that

1 1 1 1

(01 ) 2(0y ) 2 (03) 2 (Oj)2

1 1 1 1

yI =H+ F 2C y2 y (6)
(aj y2 Co ) (aj ) 2 (a )2

2 3 1 2

1 1 1 1

(03 ) 2(Or)2 (Ga) 2 (03)

where oy , oy , and oy are the tensile yield stresses in the 1, 2, and
3 directions of anisotropy. Also, if TY 1 I and T12 are the yield

stresses in shear with respect to the principal axes of anisotropy,

then

I 1 1

21. - 2 2M 2N = y (7)
(123) (1)2 (T1 2

The form of Eq. (5) is valid only when the principal axes of

anisotropy are taken to be the axes of reference; otherwise the

stress components must be transformed in the manner described in
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Appendix A. The functional dependence of the parameters of

anisotropy on temperature and moisture follows from Eqs. (6) and

(7) when the yield stresses are expressed as functions of

temperature and moisture content.

The obvious association, implied by the term 'work-hardening,'

between the work used to produce plastic flow and the hardening

created, suggests the hypothesis that the degree of hardening is a

function only of the total plastic work, and is otherwise independent

of the strain path. The external work dW per unit volume done on

the element during an infinitesimal increment of strain d ij, with

the continued loading of an element of the material is

dW = aijdeij (8)

A part of this work

edW = de. (9)
e ij ij

represents recoverable elastic energy; the remainder is the plastic

work per unit volume, i.e.,

dW = dW - dW a W(d - dc" )
p e ij lj ij

dLp  (10)

ij ij

where dJ . dc - dce is called the plastic strain increment.
ij ij ii

The term dW is necessarily positive since plastic distortion is an

irreversible process, and the plastic work is then
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Wp = G idEPji)

In order for plastic work to be performed, the state of stress

must be on the yield surface, i.e., the stress state must also

satisfy the condition given by Eq. (5). To enforce this constraint,

the Lagrange multiplier dA is used [67). Then

[a..dep  - f ( )dX] 0 (12)

13

which gives

d =p a- dX (13)
ij 3 ij

With the use of Eq. (5), a set of equations for the plastic strain

increments can then be written as follows:

d p * dA, i = j
ij ij

(14)
*

dyP = 2r .dA, i # jdij i3

where

0I = [H(O 1 - a2) + G(o 1 - o3)]/(F + G + H)

2 = [F(a 2 - a3) + H(02 - 1 )]/(F + G + H)

a3 = [G(0 3 - a1) + F(a 3 - a 2)]/(F + G + H)

(15)

= L /(F + G + H)23 23

.1
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31 = MT 31/(F + G + H)

T = NT 2/(F + G + H)

Separating the strains into elastic and plastic components

gives

d 1 = Sd11 1+ S12 d2 + S13 d3 + d

dE2 = S do + S2do + S2do + d (16)
2 21 1 22 2 23 3 2

dE: S do + S do + S do+ e
3 31 1 32 2 33 3 3

and for the shear components

dy23  44 23 23

dy3 1 = $55dT3 1 + dyl (17)
31 55 31 31

dy Sd + dyp
dY1 2 = 66d 12  12

where S are the coefficients of the elastic compliance matrix [Se]
ij

in

(d ISe d (18)

The inverse of Eq. (18) is

{do} = [Ce]{dLK (19)

ee

where [C Is the elastic stiffness matrix.
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Relating the six parameters of anisotropy to the strain history

is an extremely complicated problem. The problem can be simplified,

however, by the assumption that the yield stresses must increase in

proportion with strain hardening. This assumption is justified by

the fact that the directions of anisotropy in fibrous composites

remain effectively the same during deformation, and that for lack of

experimental data, the choice of a complex hardening rule is not

justified. If Xo, Yo etc., are the initial yield stresses, then

according to the assumption of isotropic hardening above, X = hXo,

Y = hYo, etc., where h is a parameter increasing monotonically from

unity which expresses the amount of hardening. The anisotropic

parameters must then decrease in accordance with Eq. (6) as

2F = F /h2 , etc. The way in which h varies with the strain can be0

explained by analogy with the isotropic theory due to von Mises.

Let

2 + ~ 1=7 +G+

( 2  a3) + G(a 3  0) 2 + H( 1  a2 2

2 2 +NG2 +]

2L3 + 2MTI + 2N 2

+ 23 F+31 12J (20)F + G + H0

be a nondimensional measure of the equivalent stress T. By analogy

with the von Mises criterion for isotropic materials, Hill [10]

suggested that if there is a functional relation between F and the
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work W (this is yet to be demonstrated by experiment), there must be

one between ' and the effective (or equivalent) strain, fd-, as

defined by

W (F +G + H 11/[F(Gdc 2-HdE-3 ) 2 +(Hdc 3-Fde 
H (F 1Ge

) L(FG + GH + HF) 2

+L2d2)L + 2(dy3 1 ) + 2(dy1 2  (21)

L + M + N 2/

where de ij and dyij are given by Eqs. (16) and (17). This is the

analogue of the equivalent stress-equivalent strain curve for

isotropic materials, the area under which is equal to the work per

unit volume. Accordingly,

dW = &(d-E - d-e) =dE p  (22)P

But, from Eq. (10)

dWp = aidcP + 1 .. + 2 23 +
." (23)

Substituting for dci' and dyP from Eq. (14) into Eq. (23) yields

2_2
dW = _ dX (24)

p3

If an effective stress-effective plastic strain curve is then

constructed, the slope of such a curve at any point will be

H' =d- (25)
dI p
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from which

d- p  dF
=T H (26)

Now, substituting for dT-P in Eq. (22), and equating the result to

Eq. (24) since both are equal to the plastic work per unit volume

dW

-a d 3 = 2dX= dW (27)

Rearranging

2 4 2d 9 - H'dX (28)

The left-hand side of Eq. (28) is recognized as the differential of

Eq. (20), defining F. Thus,

2 1( d H d3 d G + H G(o 3  1)d H( 1 - 2 )d 1

+[F(a 2 - a 3 )do 2 - H(o I - o 2 )do 2 ]

+[-F( 2 - 0 )do G(o 3  a )do 3 ]

2 23 31 3 12 3+ 2LT 23 dT23 + 2MT 31 dT31 + 2NT 12 dT12 (29)

With the use of the definitions of Eq. (15), Eq. (29) can be

rewritten as
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2 od'o a do + odo + o0do
3 1 1 2 2 3 3

+ 2 T d-r + 2T d- + 2T d-t(0
23 23 31 31 12 12 (30)

To arrive at a relation between stress and strain, Eqs. (16) and

(17) must be inverted. Rewriting these equations in matrix form,

{d -- [se]{do} + {dE p }

Thus,

[Sel- {del = [S]- I[SeI{dol + [se- {dE p }

But [Se] -i = [Ce . Also, because of the symmetry of [S e],

[Se] -[se] = [I], where [I] is the identity matrix. Hence, the above

expression becomes

[Ce {dc} -- {dol + [Ce]fdPi

or

{dol = [Ce]{dEl - [Ce]{dc p }  (31)

Substituting from Eq. (14) for dcp ,

di ] d 

or

{do I = Ice J{dc - dX{A} (32)
i- i] ij
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where, for an orthotropic material, i.e., a material with three

planes of symmetry,

Cl1 I + C 12 c2 + C13G3

C1 2aI + C22 a2 + C23a3

C13c + C23a2 + C3303

fA) E, (33)

2C44 23

2C5 5 3 1

2C66Ti 2

Equating Eqs. (28) and (30) yields

4 2 * * *

4 7 2 H'dX - da + ado2 + CTdd391 1 2da2  a3d 3

+ 2723 dT23 + 2T31 dT31 + 2r12 d12 (34)

Now, substituting for do in Eq. (34) from Eq. (32), and solving for

dX

AId 1 + A2 dc2 + A3dc3 + A4dy23 + A5dy31 + A6dy12B

where A, i = 1, ... , 6) are elements of {A}, andI1
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4 2,H * * *

B = U H + AlO1 + Ao + Ao
9 1 1 2 2 3 3

+ 2A4 T23 + 2A531 + 2A 612 (36)

Finally, substituting for dX from Eq. (35) into Eq. (32) yields the

desired form for the stress-strain relation

{dol = [CP]{dc} (37)

where

2
AI  AIA 2  AIA 3  AIA 4  AIA 5  AIA 6

c - - -- i
1f B 12 B 13 B B B B

A2 A2A A2A A2A A2A
2 2 3 2 4 2~ 5 2

22 B 23 B B B B

2
A A3A4 AA AA6

33 B B B B

[Cp] = (38)

A2 A4A A4A
Symmetric C 4 45 6

2
A2 ASA

55 B B

2
C 6

66 B

is the plastic stiffness matrix.
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3.5 Material Model

To apply the method of analysis developed in the previous

section to fibrous composites, the material properties in the 1, 2,

and 3 directions are needed. If the material is transversely

isotropic, the properties in the 2 and 3 directions are the same.

For mathematical consistency with the formulation, a relation

between the effective stress and effective strain is required. Also,

the tangent modulus H' of the effective stress-effective strain

curve is needed, as shown in Eq. (36). Furthermore, the dependence

of the material properties on temperature and moisture content is

required if hygrothermal loadings are to be handled, and the actual

material response under varying conditions of environment is to be

considered. Both the elastic and the plastic response of a material

change with temperature, and for polymeric materials, with moisture

also, as evidenced by numerous experiments 16,16,17]. Therefore,

the entire effective stress-effective strain curve of the material

for each state of the environment must be available.

Ramberg and Osgood [22], used a three-parameter model to

describe the stress-strain curve of a material. In their model, the

strain was expressed as a function of the stress, with the three

parameters selected to best fit the empirical data. Richard and

Blacklock [68,69] developed another three-parameter model which

was found to fit stress-strain curves for composite materials more

accurately [19]. This model is of the form
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a Ec/[1i + lEe/co n]/n (39)

where a and n are two independent parameters, and E is the initial0

slope of the stress-strain curve. Since the shape of an effective

stress-effective strain curve is similar to a tensile stress-strain

curve, a similar equation for the effective stress-effective strain

can be written as

= ?/[l + In :l nl/n (40)

where - is the effective stress and T is the effective strain, as

defined by Eqs. (20) and (21), respectively. The two independent

parameters o and n, together with the third parameter T, which is
0

the initial slope of the curve, are selected to best fit the

experimental data.

The tangent modulus H' of the effective stress-effective plastic

strain curve is related to E as (701

H' = T (41)

where E is found by differentiating Eq. (40) with respect to T. The
T

resulting equation is

1+n

ET E/(l + T/W 0 I, n (42)

LW0
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By fitting Eq. (40) to the effective stress-effective strain

curves for different temperatures and moisture contents, a functional

relationship of the parameters E, Io, and n to temperature and

moisture can be established. In a similar manner, functional rela-

tionships can also be found for all other material properties.

3.6 Finite Element Formulation

The finite element technique is now widely accepted as an

accurate method of stress analysis. Progress has been made on

three fronts, all of which contribute to the strength and

flexibility of the method. First of all, the relation of the finite

element method to previous well-established methods in continuum

mechanics has given it a firm foundation. Secondly, the search for I -

and development of the many types of finite elements that suit

continuity and/or equilibrium requirements has given it a wide area

of application. Finally, extension of the method to the study of

both material and geometric nonlinearities has resulted in more

realistic models and design methods.

Prior to the widespread application of digital computers, the

inelastic behavior of solids was one of the most intractable

problems in solid mechanics. The combination of large digital

computers and the finite element method has made possible the

solution of most of these hitherto intractable problems. However,

in most of the previous literature on the subject, simple constant

stress elements Lave been used. This was largely motlvated by the
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difficulty of performing an exact integration in an element contain-

ing both elastic and plastic regimes. With numerical integration

techniques already introduced into the formulation of complex

elements [71-73] in the analysis, such difficulties disappear. Among

the different numerical integration techniques, the Gause method

1701 is most widely used.

A recent comparison of various complex elements in three-

dimensional analyses by Cloulgh 1741 has shown that isoparametric,

numerically integrated brick elements are more efficient in elasto-

plastic analyses than simple elements. An isoparametric formulation

in three-dimensional space is presented in detail in Appendix B.

This type of element, viz, the isoparametric element, will be used

in the present work.

The data required to incorporate any element into a static

analysis can be conveniently organized into four characteristic

matrices. These matrices define the elastic or plastic behavior,

the spatial assembly into the structure, and the required output

information for each element. The four matrices are:

1) The element stiffness matrix, iCe] or [Cpl.

2) The element initial stress-free IFI or {dM vector.
mo [no

3) The element assembly matrix.

4) The element output matrix.

The element initial stress-free vector depends on whether a

stress field or a displacement field Is assumed for the element.
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For any type of element, a force-deformation relationship is

needed, which leads to the first two characteristic matrices, i.e.,

the element stiffness matrix and the initial stress-free vector.

The form of this relation is

fFlm = [C] md} m - {FlMo (43)

where

{F} = independent generalized forces for element m; a second
m subscript zero denotes initial values.

[CI m = element stiffness matrix (non-singular).

{d I = independent generalized deformations for element m.m

The third characteristic matrix is the element assembly matrix.

To assemble the structural stiffness matrix in the assumed displace-

ment method, which is used in this work, the independent deformation

variables {dl for each element have to be transformed into
m

equivalent nodal displacements (Al in the global system, using them

transformation (assembly) matrix [a], i.e.,

{d} = [a] {AI (44)m m m

Depending on whether the assumed displacement method or the

assumed stress method is used, the for.ith characteristic matrix

relates the independent variables to the required output information,

i.e., stresses in the former case, and displacements in the latter.
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3.7 Computer Program

While the principles of three-dimensional elastic stress

analysis by the finite element method have been obvious from the

early days of the development of the method [75-771, their practical

implementation leads to some immediate obstacles. As the number of

elements increases, so do the number of degrees of freedom, increasing

the size of the stiffness matrix, which requires larger computer

in-core storage. In early approaches to three-dimensional analyses,

the simple tetrahedral element was the obvious choice [76,78]. The

adequacy of results of the two-dimensional simple triangle gave

similar confidence in the tetrahedral element [79]. However, it

was soon realized that, although convergence to the exact solution is

guaranteed as the number of elements is increased, it was too slow

for problems of even moderate size [80]. While the tetrahedron has

certain advantages in its formulation [77], it is nevertheless an

inconvenient shape to deal with in grid generating, i.e.,

topologically, and usually several have to be combined to form easily

managed, hexahedral shapes [79]. Various families of isoparametric

elements were introduced by Zienkiewicz, et. al., in 1967 [79].

These elements are more efficient than tetrahedrons, as mentioned

earlier, and will be utilized in the present analysis, thus allowing

a greater accuracy to be achieved for a given number of degrees of

freedom and given computation time.

In the present work, a computer program has been developed

making use of many of the more recent developments in both areas of

i __
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finite element analysis and computer programming. The following is

a description of the main features of this program 'NCLAP'

(Nonlinear Composite Laminate Analysis Program).

A modular approach has been adopted for NCLAP, with the various

main finite element operations being performed by separate sub-

routines. Figure 5 shows the organization of the program. The

basic finite element steps are performed by primary subroutines,

which rely on auxiliary subroutines to carry out secondary

operations. The construction falls into three phases.

Phase 1. Data are input and checked for possible preparation

errors, an important feature when considering the amount of data

input required for three-dimensional problems.

Phase 2. Stiffness and stress matrices and the applied load

vector are generated. The nature of laminateC composite problems

requires elements with large aspect ratios, i.e., the ratio between

minimum and maximum characteristic dimensions of an element in the

mesh. This is because the thickness of a lamina is typically very

small compared to its surface area. Large aspect ratios lead to an

ill-conditioned stiffness matrix, i.e., the diagonal terms become

very small compared to the off-diagonal terms, a situation that can

lead to large solution errors. However, by using reduced integration

techniques (811, the problem can be overcome.

Phase 3. A 'frontal' solution technique [82,831 is used for

the solution of the stiffness equations. The advantages of using
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this method rather than Ehe well-known banded matrix method are:

1) In solving the stiffness equations using a banded matrix,

the order in which the nodes are numbered is very important

since it influences the bandwidth. Using the frontal

solution technique, however, does not require any ordering

of nodal numbers. Hence, if a mesh is to be modified at a

later time, no renumbering is needed. This saves

considerable time and effort in data preparation.

2) For higher order elements, less core storage is needed.

Several examples which justify this statement can be found

in Reference [84].

3) Since variables are eliminated in this method as soon as

conceivably possible, operations on zero coefficients are

minimized and the total number of arithmetic operations is

less than with other methods. Thus, less storage and

computer time is used.

4) Because any new equation occupies the first available space

in the front, there is no need for a bodily shifting of the

in-core equations as in many other large capacity equation

solvers.

In any incremental analysis, the use of smaller load increments

implies a larger number of increments to achieve the same total

applied load. Hence, more time is spent in reconstructing stiffness

equations. A main feature of the computer program NCLAP developed

in the present study is that it allows for the use of small load
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increments without increasing the computing time significantly. The

stiffness matrix is reconstructed only for those elements that

become plastic, or when hygrothermal loading is considered.

A description of the input data required is given in Appendix D.



SECTION4 4

EXAMPLE PROBLEMS

The method of analysis presented in this work, together with

the computer program NCLAP developed for its implementation, can be

applied to a very wide range of problems. This section illustrates

a few of these possible applications. Four different problems will

be solved using the analysis and, whenever possible, comparisons

with results obtained using other methods will be made. These

four problems cover the areas of generally orthotropic laminated

beams and plates in bending, free edge effects in laminated plates,

and the problems associated with these edge effects around circular

holes. Both mechanical and hygrothermal loadings will be considered,

and nonlinear material effects will be included.

4.1 Flexure of a Composite Beam Under Three-Point Loading

The problem of a composite beam under three-point loading is

presented here and results are compared with results for the same

problem using cla;sical laminated plate theory as reporte-d by

Adams and Miller [851. The composite beam is similar to an

unnotched standard Charpy impact specimen, being simply supported,

with a span s = 32.5 mm, and width b equal the height I = 6.5 mm,

as shown in Figure 6. This beam consists of thirteen plies, with

two plies at 00 , plies at +450 and -45*, two 00 plies, one ply at

900, two plies at 00, plies at -45* and +45', and two 00 plies.

'I,
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In accordance with the standard notation of Reference (71, the above

composite laminate is identified as

[02 /+45/02/] s

where the bar over the 900 ply indicates that the plane of symmetry

passes through the middle of this ply. Symmetric laminates, such

as the one presented, contain pairs of plies aligned at the same

angle at equal distances on opposite sides of the midplane. For

this type of laminate there is coupling between twistin curvatures

and bending moments, i.e., the D16 and D26 terms in the [D] matrix

of the classical laminated plate theory [4] are not zero.

z

y

b

s= 32.5 mm
b= h = 6.5 mm

x

Figure 6. Simply Supported Beam Under Three-point Loading.

,
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The material used was a Modulite 
5206 graphite/epoxy composite

[86], the mechanical properties of which are as follows:

El1 =141 GN/m2 (20.52 Msi)

E = E 15GN/m2 (2.15 Msi)
22 33

(45)
2

G = G = G =5.5GN/m (0.8 Msi)
12 23 31

v12 =v 2 3 =v 3 1 = 0.25

The beam lay-up is shown in Figure 7, with the z-scale

expanded to show detail. The three-dimensional finite element grid

used consisted of ten layers of elements with six elements in the

x-direction and one element in the y-direction in each layer. In

this grid, the two 0* plies were treated as one layer and the 900

ply as two layers. The 900 ply was represented by two layers of

elements so that the deflection at the midplane could be calculated

and compared to that of Reference [851, since only midplane deflec-

tions could be calculated by the latter.

The load was applied as concentrated forces at the nodal points

of the midspan, i.e., at x - s/2 as shown in Figure 7. A total j

force of 100 N (22.5 lb) was applied in the negative z-direction and

the deflections at x - s/2, at each ply interface, were calculated.

Table 1 gives the deflections at midspan for different values of z.
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02°2

Figure 7. Layers of the Finite Element Grid

for the Simply Supported Beam
(z-scale expanded to show detail).
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In the study by Adams and Miller [85], the classical laminated

plate theory was used to solve the same problem, viz, bending of a

composite beam under three-point loading (Figure 6). They assumed

a double sine series for the load in the form

4P° sin mf---asin mb (46)Pm = m--n s s

where p is the load intensity, a is the location of the center of

application of the load, and 2b is the length of the beam over which

the load is applied. The value of 0.02s was used for b to approximate

a concentrated load at midspan, as illustrated in Figure 6. They

obtained a solution for the deflection w in the form

2
ps m2

w m 2- 2 1 +2 2D -)sin s  (47)

m m i k 1A 55 m TD 1 1

in which A55 and D are terms of the well-known [A] and [D] matrices

of the classical laminated plate theory [4], and k is an 1i

experimentally determined shear correction factor. For the laminate

of this example, these values are [85]

555
A 55 =36.8 MNm - I ( 2 . 1 x 105 lb in - 1

4
D = 3.2 kN-m (2.8 x 10 in-lb)

i0



49

Using the method of Reference [851, as described above, only

the deflection at the midplane (z = h/2) can be calculated; the

maximum deflection at midspan, as calc ..ated from Eq. (47), is

-6
w = -7.760m (-0.306 x 10 in) (48)

This value corresponds to the value at z = 3.25 mm in Table 1, which

is

W = -8.034pm (-0.316 x 10-6 in) (49)
z h/2

The theory of Reference [85], as represented by the value given

in Eq. (48), was shown to predict values of deflection somewhat

lower than obtained experimentally. Thus, the present analysis,

represented by Eq. (49), is actually in better agreement with

available experimentAl data, possibly due to the fact that the D16

and D26 terms were neglected in the analysis of Reference [851.

Table I also shows the effect of interlaminar stresses on the

deflection of the midspan. The midspan deflection is not the same

at each ply interface; rather there is a change in the thickness

of each lamina due to the concentrated applied load at midspan.

This effect cannot be detected by the classical laminated plate

theory, and is not predicted by Reference (851. The magnitude of

the maximum interlaminar normal stress o z is 8 percent of the max-

mum in-plane stress (I for this example. This is a significant
v

value, since the transverse stiffness is oniy 4 percent of the
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Table 1. Midspan Deflections of a Simply Supported
[0 /±45/0 /90]I Laminated Compos ite Beam

Under Three-Point Loading as Predicted by
the 3-D Finite Element Analysis (NCLAP)

Distance from
Bottom Surface Deflection

-Z (mm) w (-pm)

0.0 7.726

1.0 7.766

1.5 7.797

2.0 7.843

3.0 7.986

3.25 8.034
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longitudinal stiffness. The effects of interlaminar stresses will be

discussed in more detail in the last two examples.

4.2 Cylindrical Bending of Laminated Plates

In the past, laminated plates have often been analyzed using the

assumption that they behaved as specially orthotropic laminates.

For this type of laminate, the D and D terms of the [D] matrix
16 26

are zero. Most practical laminates, however, do not fulfill these

conditions of special orthotropy.

Unlike other methods in the literature, the method of analysis

presented in the present work can handle any lay-up and is not

restricted to symmetric or specially orthotropic laminates. To be

able to check the results of the present computer program, however,

problems reported in the literature are modeled and results compared.

One such problem is that of cylindrical bending of an antisymmetric,

specially orthotropic (cross-ply) laminated plate.

Shown in Figure 8 is the three-dimensional grid used to model

an antisymmetric laminated plate of the configuration 10/90/0/90]1.

The plate is 30 mm long, 20 mm in width, and consists of four plies

each of which is 0.4 mm thick. Each ply is represented by a layer

of 24 elements, with 6 elements in the x-direction, and 4 In the

y-direction. Thus, the grid consists of a total of 96 elements,

175 nodes and 525 degrees of freedom.

The plate is simply supported along x = 0 and x = a and Is free

along the other two edges (see Figure 8). A constant transverse



1 52

z

y

Figure 8. Four-ply Laminated Plate
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load q is applied by means of nodal forces. Each node on the top

surface is loaded by a 1N (0.225 lb) force in the negative z-

direction, corresponding to a uniform transverse applied load of

qo = 0.16 MPa (23.2 psi). The maximum deflection at the center of

the plate as calculated by NCLAP is

wI -0.0492 mm (-1.9370 x 103 in) (50)
z=2h

The same problem was also solved using the classical laminated

plate theory solution presented in Reference [51, which is based on

the assumptions that the plate is of infinite length in the y-

direction and that the transverse load is independent of y, i.e.,

q = q(x). Thus, the deformed surface will be cylindrical, i.e.,

u = u (x), v = 0, w = w(x) (51)

where u and v are the midplane displacements in the x and y

directions, respectively. According to Reference [51, the maximum

deflection occurs at the center of the plate and is given by

w - A1 1qa
4  (52)

max 384 D

where

21) = A IDI - B 1 (53)

and w does not vary with z, as indicated by Eq. (51).
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With the aid of the computer program AC3, which is a point

stress analysis program [71, the [A], [B], and [D] matrices of the

classical laminated plate theory were evaluated for the [0/90/0/90]T

configuration. Using Eqs. (52) and (53), the maximum deflection was

then calculated as

w = -0.0653 mm (2.5708 x l0 - 3 in) (54)

As calculated by the present program, displacements in the y-direction,

i.e., v , satisfied Eq. (51). Displacements in the x-direction,
0

however, showed dependence on the other two coordinates, i.e.,

u = u(x,yz). At this point, the difference between the value of

w in Eqs. (50) and (54) cannot be adequately explained.

The w deflection variation along x = a/2 is given in Table 2,

at every ply interface. A slight decrease in w occurs away from

the boundaries y = 0 and y = b. This change of w at the boundaries

is caused by the edge effects due to the presence of interlaminar

stresses. It does not exist for laminates with no interlaminar

stresses, e.g., isotropic laminates. The significance of inter-

laminar stresses will be discussed in the following examples.

4.3 Interlaminar Stresses in Laminated Plates

As stated earlier, laminated composites develop out-of-plane or

interlaminar stresses even under uniaxial loading. It was also

shown that these stresses cause delamination of the laminate. Two-

dimensional analyses presented in the literature cannot accurately
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Table 2. Plate Deflections Under Uniform Transverse

Load Along x = a/2, as Predicted by the
3-D Finite Element Analysis (NCLAP)

Distance from Deflection w (mm) at Values of
Bottom Surface y/b Indicated

z (mm) 0.0 0.25 0.50 0.75 1.0

0.0 0.0492 0.0489 0.0488 0.0489 0.0492

0.4 0.0492 0.0489 0.0489 0.0489 0.0492

0.8 0.0492 0.0489 0.0489 0.0489 0.0492

1.2 0.0492 0.0489 0.0489 0.0489 0.0492

1.6 0.0492 0.0489 0.0488 0.0489 0.0492

Lim..... ..



56

handle the problem of interlaminar stresses, since this problem is

three-dimensional in nature. Results obtained with these methods

will be compared to results using the present analysis in the

following example.

Four-ply symmetric laminates will be considered. Because of

symmetry, only one quarter of the upper two plies of the plate need

be considered, as shown in Figure 9. The origin is therefore at the

midplane. The three-dimensional finite element grid used consisted

of two layers of elements. Each layer, being 30 mm in the x-

direction and 20 mm in the y-direction (see Figure 9), was con-

structed by six elements in the x-direction and four in the

y-direction. Ply thickness was taken to be 0.4 mm; thus a b/h

ratio of 50 was achieved, where b is the width of the plate in

the y-direction and h is the lamina thickness.

To show an important and useful feature of the present

analysis, viz, the ability to handle hygrothermal as well as

mechanical loadings, or even a combination of these two types of

loadings, the material properties over a range of temperature and

moisture levels must be known. Few data have been published

that describe the dependence of material properties on environmental

changes. One such set of data available is for the Hercules

AS/3501-6 unidirectional. graphite/epoxy composite, which will be

used in this example. The functional dependence of the properties

of this material on temperature and moisture were experimentally



Ti1=0. 4 mm

a= 3Omm

Fil gure 9. Otne QLuad(rant of the Upper Two P1 ic of~-
ai Four-Ply Composite Laminate.
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determined at the University of Wyoming [87]. These properties are

represented by the second order polynomial

2 2
P(T,M) = C1 T + C2 M + C 3T-M + C 4T + C 5M + C6  (55)

where P is the functional material property of interest, T is

temperature (OC), M is moisture content (weight percent), and the

C's are coefficients given in Table 3.

Although the present method can handle both applied nodal

forces and displacements, most analyses presented in the literature

can only handle uniaxial strain. For this reason, i.e., to be

able to compare results, the same type of loading, viz, uniaxial

strain was used here. For each laminate considered, a uniform

displacenent was applied in the x-direction such that c = 0.01X

percent. The average in-plane stress -' is also given for eachx

case. This will permit the comparison of the relative magnitudes

of the applied in-plane stresses to the interlaminar stresses,to

ascertain the importance of the latter.

4.3.1 Cross-Ply Laminates

The interlaminar stress distributions fer [90/01 s and [0/901

laminates are shown in Figure 10. The interlaminar normal stress

az, plotted in Figure lOa, is very small at y/b = 0. As y/b

increases toward the free edge of the plate, a increases (in

absolute sense) to a peak value, then reverses direction. This

peak value occurs at y/b = 0.5 for the [90/0] laminate, and at
5
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Table 3. Coefficients of Polynomials in Eq. (55) for the Mechanical

Properties of Hercules AS/3501-6 Unidirectional Graphite/

Epoxy Composite [87]

Material
Property C C C 3  C4 C5 C6

(Hpa)123456

E -0.424 -1.357 -1.329 -13.66 8.781 1.301 (10')

E22  -0.164 -0.211 -0.133 -10.97 0.121 1.119 (104

E33 -0.164 -0.212 -0.133 -10.97 0.121 1.119 (104)

023 -0.046 -0.095 1.33 (10
- 

) -5.451 -4.035 3.74 8 (1023
G31 -0.086 -0.178 2.50 -4

)  
-7.570 3

G12 -0.086 -0.178 2.50 (10
"
) -10.23 -7.570 7.031 (10

-3 - 3
oY -3.095 (10

-3
) -6.807 (10 ) -3.000 (10 ) -0.477 -G.067 776.1

-4 -3

oy -7.211 (10
-4 
) -1.276 (10

- 3
) 1.372 (10

-
3) -0.148 -0.158 52.4

2

03 -7.211 (104 ) -1.276 (10- ) 1.372 (10 3) -0.148 -0.158 52.4

TY -3.171 (10
- 4 

) -6.468 (10
- 4 

) -9.800 (10
-4
) 5.360 (10

- 3
) 0.037 31.7

23

• -7.387 (10
- 5

) -1.507 (10 
- 4

) -2.283 (10
-
) 1.249 (10

-
) 8.679 (10 7.153

31 -.8-10 -. 0 41 -4 - 3
y -7.387 (10) -1.507 (10 

- 4 )  
-2.283 (10

-
) 1.249 (10

-
) 8.697 (10

-
) 7.153

12

o1 -5.881 (10
- 1
) -1.705 (10

-
2) -7.508 (10

- ) -0.206 0.321 14t)7.0

0u -5.892 (0) -1.792 (10 
- 3

) 1.431 (10
- 3
) -0.163 -3.189 '9.

2 
-

03 -5.892 (10
"4
) -1.792 (10

- 3
) 1.431 (10 

3
) -0.163 -O.139 60.7

u

Tu -9.130 (10 
-4
) -8.208 (10 

-4
) 1.482 (10

- 3
) -0.141 -0.139 87.3

23 
- -4

'u -9.146 (10
- 5
) -8.222 (10 

5
) 1.485 (10

-
) -0.014 -0.014 8.746

1 -9.146 (10
-
) -8.222 (10 

-
) 1.485 (10

-4
) -0.014 -0.014 8.746t12

Table 4. Poisson's Ratio, and Thermal and Moisture Expansion

Coefficients for Hercules AS/3501-6 Unidirectional
Graphite/Epoxy Composite [87]

V23  0.492

S1 3  0.308

0 .1 2 .3 0 8 6

11 0.882 10 /°C

a22  30.6 lo-6 /oc
-6

a22 30.6 10 /°C
ot33 30.6 lo- 6/0C

-6

ll 90.0 10 /%M

-3
3.0 10 /%M

223
(33 3.0 10-3f%M

I ..
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y/b = 0.75 for the [0/901 s configuration, i.e., closer to the free

edge in the latter configuration. The peak value of a for thez

[0/90] laminate is almost double that reached in the [90/0] s

laminate. At y/b = 0.96, the interiaminar normal stress shows a

high but finite value; tension in the [0/90] configuration and

compression in the 190/01s laminate. Thus, the distribution of the

interlaminar normal stress in the [0/90] laminate is not a mirror
s

image of the distribution in the [90/0] laminate. This behavior

agrees with results recently reported by Spilker and Chou [88] in

their work on interlaminar stresses. A slightly different

graphite/epoxy material was used in their work, e.g., the longitudinal

modulus E = 1.4 x 105 MPa as compared to a value of 1.2 x 105 MPa

for the Hercules AS/3501-6 material used in this example. The

purpose here, however, is to show the trend in the material behavior

rather than a point-by-point stress comparison. Spilker and Chou

also reported thL' satisfying the traction-free edge condition, i.e.,

the boundary conditions at the free boundaries, would result in the

convergence of all stresses to finite values at the free edge, in

direct conflict with the idea of stress singularities [39,401. To

satisfy the traction-free edge condition, special elements must be

used, such as those of Reference [881, or the hybrid elements of

Reference 1791. These are complex elements, however, and Reference

[881 shows that satisfying the traction-free edge conditions, while

giving more accurate point-by-point stress values, does not change

the stress gradient. ..

____I
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As shown in Figure 10b, the interlaminar shear stress distri-

bution Tyz for the [0/901 laminate is also not a mirror image of

that for the [90/0] laminate. The interlaminar shear stress Ts yz

increases in absolute value from y/b = 0 to y/b = 0.96, where it

reaches a peak value near the free edge, then drops to zero at the

free boundary (y/b = 1.0), as dictated by the traction-free boundary

condition.

Figure 11 is a plot of the interlaminar normal stress oz

through the thickness. To increase information about the distribu-

tion through the thickness, the finite element grid was changed for

the plot of Figure 11. Each ply was represented by two layers of

elements instead of one. It is again noted that the stress

distribution for the [90/0]s laminate is not a mirror image of that

for the [0/901 laminate. Near the free edge, the interlaminar

normal stress has a maximum value at the midplane of both configura-

tions, i.e., at z/h = 0, as shown in Figure 11. These results are

in good agreement with those reported by Wang and Crossman [39].

In order to permit comparison with other published results,

the same problems were solved again using the material properties

of Reference [24], which are given below.

E1 - 138 GPa (20 Msi)

E22 m E33 = 14.5 GPa (2.1 Msi)

G 23 = G12 = 6 GPa (0.85 Msi)



63

0 (

00
c4 4

od u

-4

-J J F-
if))

0 11

Q)4 X

0 :j 4

00 0) ino
p -) p

zL1z



64

v23  v 31  v 12 =0.21

Distributions of a and T at z/h = 1 for the [0/90] and [90/0]
z yz s

configurations were calculated. For the [0/90] laminate, the
s

present results agreed well with those reported by Renieri and

Herakovich [24]. Both methods predicted that for y/b < 0.5, the

classical laminated plate theory solution was approximately

recovered. The maximum value of a near the free edge as calculatedz

with the present three-dimensional analysis was the same as that

of Reference [24]. This value was much smaller, however, than

that reported by Wang and Crossman [39] using the same material.

Basically, the results of the present work and those reported in

References [24,39,88] were closeuptoy/b = 0.5; but in regions nearer

the free edge, results differed. While Wang and Crossman [39]

indicated a zero value for a at the free edge, both the presentz

method and that of Renieri and Herakovich [24] predicted the value

of a close to the free edge to be compression. The conclusions

stated above for a were found to be true also for the interlaminarz

shear stress distributions. For the [90/01 configuration, thes

present results again agreed well with those of Reference [24] for

both components of interlaminar stress.

4.3.2 Angle-Ply Laminates Under Mechanical and Hygrothermal LoadIng

Angle-ply laminates of the configuration [+0] , and [+0],

where 0 is the ply angle, were also considered here, results being
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presented in Figures 12-14 for e = 200, 30% and 700. The following

observations apply to each of these configurations.

The interlaminar normal stress a at midplane for the [+61
z -S

laminates increases from compression at y/b = 0 to tension at

y/b = 1, i.e., at the free edge. For the [+61 s laminates, az

decreases from tension at y/b = 0 to compression at the free edge.

The absolute value of az at y/b = 0 for the [+6] s configurations is

about half that for the [+8] s configurations.

Results presented here are in disagreement with those reported

by Pipes and Pagano [261, who noted that the presence of interlaminar

stresses might be considered an edge effect restricted to a small

region near the free edge. In their work of Reference [26], Pipes

and Pagano presented a method for predicting the interlaminar

stresses under uniform axial extension. They considered symmetric

angle-ply laminates loaded by tractions applied only on the ends

x = constant. A displacement field of the form

u = Cx + U(y,z)

v = V(y,z) (56)

w = W(y,z)

was then assu.&*d. This type of displacement field, together with

the symmetry conditions, led to the following boundary conditions:

YXz(YO) = 0

yy(y,0) = 0 (5/)
yz
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-yz(O'z) =0

Pipes and Pagano [26] noted that such an analysis, which considers

stress boundary conditions only, cannot handle a bar with clamped

ends under extension, such as a tensile coupon, and that their

method was simply an attempt to discern the influence of a free edge

on laminate response. They stated that the true behavior can only

be studied by abandoning the assumption that all stress components

are independent of x. Most of the methods of analysis presented in

the literature, however, have taken the same approach as Pipes and

Pagano [26] in dealing with the problem of interlaminar stresses.

It is believed that the differences between the results of Reference

[26] and those of the pre~ent analysis, which includes the dependence

on x, are due to the assamptions used in Reference 1261, as discussed

above.

The interlaminar shear stress Tyz , presented in Figure 13 for

different values of 0, is always positive for the [+0] laminates,S

in agreement with results for a [+45] laminate reported by Rybicki
S

[341. The plots of r shown in Figure 13 indicatu a steadyvz

increase (or decrease) to a high absolute value near the free edge

before reaching zero at ,-/b = 1, as dictated by the traction-free

edge condition. This high value of t near the free edge wa.s alsoyz

reported by Pipes and Pagano [261. The variation in the Interlaminar

shear stress T as shown in Figure 14, is less than the variationZx'

in T
yz

Ii
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Figures 15 through 17 show the variation of the interlaminar

edge stresses as a function of The lay-up angle 0 for a [+0]
s

laminate. Two types of loading are considered, mechanical and

hygrothermal loadings. The present analysis can handle both

types of loadings, including any combination of them. Hygrothermal

loading includes a temperature change, a moisture change, or a

combination of the two. It can be a constant overall change, or

even some distribution of temperature and moisture. However, for

simplicity and clarity in the present discussion, the laminate in

this example will be loaded separately bv a mechanical loading of

= 0.01 percent, and a uniform thermal loading of AT = -500C, with

the stress free temperature assumed to be room temperature, viz,

21°C. Apart from a small variation due to temperature-dependent

material properties, and a sign change, stresses produced by a

positive change in temperature are the same as those produced by a

negative change.

Several interesting results are noted in comparing the free

edge effect of mechanical uniaxial loading and thermal loading, for

different values of 0. The interlaminar normal stress ( , shown in

Figure 15, increases rapidly as 0 increases to about 200, and then

decreases; the decrease is much slower beyond e = 45'. The inter-

laminar shear stresses (Figures 16 and 17) decrease from zero to a

maximum absolute value for valuus of e in the range of 200 to 250.

Then they increase again to zero at 0 = 90' . Again, beyond 8 = 450,

the slope of the curve decreases sharply. The value of 0 at which

4
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Figure 15. Interlaminar Normal Stress versus Lay-Up
Angle for 1+01~ Laminates.
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Figure 16. Interlaminar Shear Stress versus Lay-Up
Angle for [+01 Laminates.
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a peak absolute value is reached by the interlaminar stresses varies

under the mechanical loading and thermal loading. Under the thermal

loading condition of AT = -50°C, this peak value of 0 is from 50 to

100 higher than for uniaxial mechanical loading.

Although moisture changes have not been considered in this

example, the program is capable of handling hygrothermal loadings

due to moisture and/or temperature changes. Moisture changes are

handled by the analysis in the same way as temperature changes.

4.4 Interlaminar Stresses Around Circular Holes

The presence of interlaminar stresses near the free edges of

laminated plates was demonstrated in the previous two examples. A

more complicated and interesting type of problem is that of inter-

laminar stresses around cutouts, e.g., holes, in laminated

composites. Such problems, involving curved rather than straight

boundaries, are generally more difficult to analyze. However,

since the present analysis is a three-dimensional finite element

approach, it is capable of handling any type of boundary geometry

with similar ease. The following example illustrates this capability.

The laminates included in this example will be analyzed first

under a uniaxial strain ( = 0.01 percent) in order to comparex

results with results using other methods. The multiaxial loading

capability will then be demonstrated by applying biaxial loading to

the laminates. Finally, inelastic response will be considered.

Other methods in the literature cannot handle cases other than
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uniaxial loading, since they are based on the uniaxial displacement

field first introduced by Pipes and Pagano [26], as discussed

earlier. Few earlier analyses considered nonlinear material

behavior [20,241;inelastic laminate response was not considered in

any of these methods.

Four-ply laminates of the configurations [0/90] s and [90/0]

containing circular holes, are considered. The overall dimensions of

the laminate, as given in Reference [43], are:

Length, e = 203 mm

Width, w = 254 mm

Ply thickness, h = 7.6 mm

Hole radius, R = 6.25 mm

The three-dimensional grid used is shown in Figure 18; only one

quarter of the upper two layers need be considered, because of

symmetry. In the first part of this example, for purposes of

comparison, the material assumed is the unidirectional graphite/epoxy

composite used in Reference [43], the mechanical properties of

which are:

E = 206 (,Pa (30 Msi)

E22  E33  20.7 GPa (3 Msi)

G = G =G = 6.9 GPa (I Msi)
23 31 12

V 2 3 V 3 1 =V 1 2 = 0.336
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z

y

6.25 mm
~- 101. 5 mm

Figure 18. Finite Element Grid Used to M4odel a
Circuilar Hole In a Fouir-Ply Laminate.

The distribution of the interlaminar normal stress a is shown
z

in Figure 19 for the two configurations, viz, (0/901 sand (90/01.

under a uniaxial strain T 0.01 percent, corresponding to an

average applied stress u x 7.1 M~a. Both laminate configurations

show a compressive value for a zat e 0%, and a tensile value at

6 90*. Higher values at 0 =00 and 900 are observed In the (90/01
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Figure 19. Interlaminar Normal Stress versus Position

Around the Free Edge of a Hole in Two
Cross-Ply Laminates.
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laminate. Thus, the change in stacking sequence does not produce

mirror image distributions. Also, in contradiction with results

reported in Reference [43], the interlaminar normal stress near the

free edge of the hole does not change sign as the stacking sequence

is changed.

The analyses of composite laminates under uniaxial loading are

helpful in understanding the complex behavior of interlaminar stresses.

In actual service, however, laminates are often subjected to multi-

axial states of stress. The second part of this example illustrates

the capability of the present analysis to handle multiaxial loading

situations. Laminates with circular holes, previously analyzed under

uniaxial loading, are considered next under varying biaxial loadings.

Table 5 shows the interlaminar normal stress at two different

locations, viz, e = 0' and e = 90', under different biaxial loading

conditions. This table has been generated by varying the ratio of

T I . For the [90/0]s laminate, a is always positive at 0 = 900,x y Sz

with almost the same value. This value, shown in column four in

Table 5, is reached rapidly from zero under F /T = 0 and then attains
x y

a constant value at about T 17 = ]. Plate dimensions and Poisson's
x y

ratios appear to affect this behavior; further investigations are

needed to fully understand this response. At 0 = 00 , (o changes fromz

tension to compression as T is increased relative to T . For thex y

[0/901 configuration, the interlaminar normal stress is always posi-

tive at 6 0', but the value decreases as the ratio U / increases.
x y

At e = 0°, a increases from compression to tension as ? /U increases.
z x y

i I ifilillI_____ i
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Predictions such as those given in Table 5 should be very useful to

the designer since by estimating the value of T- /T , a suitable layupx y

can be chosen.

Table 5. Interlaminar Normal Stresses at Two Midplane Locations
Around the Free Edge of a Circular Hole in Cross-Ply
Laminates.

Ratio of Interlaminar Normal Stress

applied strains . (MPa)
rz

x y [0/90] [90/01
s s

0=00 0=900 O=00 0=900

0.125 4.0 -3.5 2.0 0.4

0.25 2.0 -2.0 0.7 0.4

0.3 1.7 -1.3 0.5 0.4

0.6 0.6 -0.5 0.03 0.4

1.25 0.4 1 f -0.2 0.4

1.5 0.3 -0.03 -0.3 0.4

3 0.15 0.12 -0.4 0.4

5 0.08 0.20 -0.4 0.4

6 0.06 0.20 -0.4 0.4

- ,-
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In spite of the fact that composite materials often exhibit large

amounts of inelastic deformation, no method of analysis considered

the inelastic behavior of composite laminates. To show hoe the pre-

sent analysis can handle inelastic material behavior, a different

material system is used in the next part of this example. The

material is Hercules AS/3501-6 graphite/epoxy, the mechanical

properties of which were given in Table 3. The method of analysis

of Reference [43] did not consider the inelastic behavior and hence

no post elastic properties were presented.

The interlaminar stresses for the two cross-ply configurations

were calculated under a biaxial loading ratio cx/c = 1.25 (see

Table 5). Figure 20 is a plot of the interlaminar stresses at the

midplane, i.e., at z = 0, while the interlaminar stresses at the

interface between the 900 and 0* plies, i.e,, at z = h, are shown in

Figure 21. For both configurations, the interlaminar normal stress

gz is dominant at 0 = 900, with a higher tensile value in the [90/0]s

laminate. The variation of oz between 0 = 0* and 0 - 90* is much

greater at the midplane than at z - h. The interlaminar shear stress

Tyz at z - 0 increases in absolute value to a maximum at 0 - 90* for

both configurations. However, at z - h, a peak absolute value is

attained at 0 - 45* . The interlaminar shear stress T., behaves in a

similar manner at z = h, except for a change in sign, and also attains

a peak value at 0 - 450. However, at z 0 0, izx decreases in absolute

value towards a minimum at 8 - 90*.

1a
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To study the inelastic behavior of cross-ply laminates, the

biaxial loading was increased, keeping the ratio constant. In the

case of the (0/901 laminate, yielding occured first at the free
5

edge of the hole in the inner 900 ply at an angle slightly less than

450, and in the outer 0' ply at an angle slightly greater than 450,

as indicated in Figure 22. As the load increased, the yield zone

moved across the 45' line in both plies, always beginning in the inner

ply, i.e., the 900 ply. Yielding in the [90/0)s laminate started

at the same locations and at the same load level. The progressive

growth of the yield zone in each lamina for both configurations is

sliown in Figure 22. The pattern in which the plastic zone propagated

in each ply did not change as the stacking sequence changed. First

failure was found to occur at the 450 position, as shown in Figure

23. For both configurations, this first failure was at the free

edge of the hole, at the miaplane. The state of stress around the

free edge of cutouts is indeed very complicated. A method of analysis

siwh as the one presented here is mandatory when designing laminates

that will not delaminate at free edges, whether at a straight free

edge or around a cutout. The ability of this method to handle

hygrotherml loadings makes it of special value in dealing with

polymeric composites, which are specially susceptable to change,; in

temperature and moisture levels. Such changes in environmental

conditions often lead to triaxial states of stress, which can only be

handled by a full three-dimensional analysis.
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[90/0Is

Load increment 12 16 24

[0/90]s

Load increment 12 16 24

a) Propagation of yield zone in 0* ply

[90/03

Load increment 12 16 24

[0/901s

Load increment 12 16 24

b) Propagation of yield zone in 900 ply

Figure 22. Propagation of Yield Zone under Biaxial Loading
T/7E = 1.25.x y

.1
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00 ply

[90/0]

90° ply

10/90]s

Figure 23. First Failure in Cross-Ply Laminates Under

Biaxial Loading.



Section 5

SUMMARY AND CONCLUSIONS

The present study has been concerned with the three-dimensional

inelastic problem of generally orthotropic laminated composites,

including hygrothermal effects.

At the present time there are not enough experimental data to

permit the construction of a 'general' theory of plasticity for

composite materials. However, analytical methods such as the one

presented here should continue to be investigated and correlated to

experimental data, in order to direct future experimental programs

toward attaining the goal of a general theory.

The example problems presented in the previous chapter demon-

strate only a few of the many potential applications of the analysis.

It would be possible to combine several of these features, such as

multiaxial loading, mechanical and hygrothermal loading, etc., to

model many different situations. The purpose here, however, is to

give an indication of the possible uses and applications of the

program. Experimental verification of these capabilities remains to

be performed.

The analysis is capable of modeling any laminated composite

subjected to triaxial mechanical and/or hygrothermal loadings. It

can also be used as a three-dimensional micromechanics analysis,

since it cau model any number of materials simultaneously. Being
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a three-dimensional analysis, it is the only way to analyze materials

such as 3-D carbon-carbon composites, which consist of yarn bundles

oriented in three-dimensions. A three-dimensional finite element

analysis is used to model the laminate. The constituent material

properties, which can be functions of temperature and moisture

content, are input as coefficients of a second order polynomial.

This, however, can be changed easily to describe any other functional

relationship between the material properties and temperature and

moisture. The current version of the computer program uses a finite

element analysis based upon a displacement formulation, and linear

isoparametric brick elements with three degrees of freedom per node.

Other types of elements can be added to the program to model

geometrically complex boundaries, crack elements, or any specialized

elements such as those of Reference [881. The modular form in which

this program is built makes it a relatively easy task to do so.

Nonlinear (elastoplastic) material behavior is included by

means of the tangent modulus method. The onset of plastic deforma-

tion is determined by the use of a yield surface which is dependent

on both temperature and moisture content in the composite. Work

hardening of the material is assumed to be isotropic In the present

version of the program, for lack of experimental data to describe

this phenomenon otherwise for composite materials. The Bauschinger

effect is also neglected for similar reasons. Statistical variations

in the properties of typical composite materials, however, may well

prove to exceed the small inaccuracies induced by these assumptions.
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The failure surface incorporated in the present analysis is similar

in shape to the yield surface and is also dependent on temperature

and moisture. The failure of any lamina will cause the current

computer program to halt execution, with proper messages. This does

not always mean that the laminate has failed, however, as discussed

earlier. Many composites will continue to carry load long after the

matrix has experienced many local failures (microcracks). For this

reason, crack propagation should be included in future work. This

capability can be incorporated into the present analysis, e.g., by

reducing the material stiffness properties of failed elements.

Other methods, originally developed for unidirectional composites,

such as those discussed in References (89-911 could also be modified

to suit the laminate analysis.

The addition of time-dependent deformation into the present

analysis is another feasible capability that could be handled.

Recently Schaffer and Adams [92] presented a nonlinear viscoelastic

z ialysis for unidirectional composites. In their work, nonlinear

viscoelastic constitutive equations for an isotropic material were

developed and incorporated in an elastoplastic computer program [18]

originally developed for time-independent analyses. To similarly

add time-dependent material response to the present work, visco-

elastic constitutive equations for a generally orthotropic material

will have to be developed.
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In summary, the present analysis is a fully three-dimensional,

elastoplastic analysis. It can be used to analyze any composite

laminate or structure consisting of any number of generally ortho-

tropic materials, for which mechanical properties can vary with both

temperature and moisture. Hygrothermal and/or mechanical loadings

can be handled.
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APPENDIX A

TRANSFORMATION EQUATIONS FOR STRESS

COMPONENTS FOR A FIBROUS LAMINA

Assume that the stress components of a certain lamina are known

in the reference axes (x,y,z), and that the axes of anisotropy for

this lamina are (1,2,3) such that the 3-axis and z-axis coincide.

Then, if the 1-axis is inclined at a counterclockwise angle 6 to

the x-axis, the stress components in the (1,2,3) system can be found

according to the equations

2 2
01 = Cx cos e + iy + 2Txy sin 6 cos e

2= x sin2 e + ay cos2  - 2Txy sin6cos6

a3 G z

T23 T yz COS e - Tzx sin 0

T 3 T sin 0 + T cos 0
31 yz zx

- g -0 x)Sin 6 cos 6 + Tx(COS2 6 - sin2 8
T12-(o x y6

ip
-.--- __________



APPENDIX B

FORMULATION OF STIFFNESS MATRIX FOR AN
ISOPARAMETRIC ELEIMENT

Consider the local coordinates F, n, and , with the origin

located at the center of the element as shown in Figure Bl. These

coordinates will be so defined as to give values of +1 and -1 on the

faces of the element. Thus, in this coordinate system the element

is a cube, Figure B2. In general, the coordinates of any point are

defined by the expressions

8
x =Nlx1 + N2x +... + N8 x8 = Nix i

8
y = Z Niy i  (B-1)

1

8
z = i Nizi

1

where xi, Yi. and zi are the nodal coordinates in (x,y,z) system and

N are the shape functions. Displacements are defined in the same
i

way; hence the name isoparametric.

8
u Niu i

1

8
V i vi  (B-2)

1
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Figure Ri. Element in (x,y,z) System of
Coordinates.
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8
w = N w1

1

where ui, vi, and w. are nodal displacements in the x, y, and z

directions, respectively, and i ranges from 1 to the total number of

nodes (8 in this example of an eight-node quadrilateral element).

The shape functions N i are given by

ii

Ni 8 ( + Ui)( + ?i )( + i) (B-3)

where il and ,i are the nodal values, i.e., +1.

The element matrices are formulated next, in terms of the

isoparametric coordinates. Relations between derivatives in the two

coordinate systems are established by the chain rule of differentia-

tion,

S [, y z , )'x x
]')ln = x, Y'n z'n 'l y  [ J ) ,

)( ) C x , C , 9 Z , C ) z ( ) z

(B-4)

where commas denote partial differentiation, and [J] is the so-called

Jacobian matrix. From Eq. (B-l),

- -.

U
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Y zi

2 Y 2  
2

N I /3E ..... 3N 81 ix3

[Jl] =3N /an 3N /a x4

aN /ac~ x 58 5

x 8 Y8 z 8d

Using the invetse of Eq. (B-4) on Eq. (B-2)

U, U, 1

A 0 0

y 0 A 0
V, 

z

W,

0 0 A
W, y

W,y 
_

where

a a aI a12 a13

[ A J = a 2 2 2 2 3

L31 a32 a331

anda 1 , etc.
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But the strain-displacement relation can be written as

U,

1 0 0 0 0 0 0 0 0

C 0 0 0 0 1 0 0 0 0
y 

x
C 000 0 00 00 1

Z~ -, (B-7)
Yy 0 0 0 0 0 1 0 1 0 V

'Y0 0 1 0 0 0 1 0 0

y 0010000W, X

Substituting from Eq. (B-6) into Eq. (B-7), and utilizing Eq. (B-2),

the relation between the strain and displacement is obtained

{l=[BI{d} (B-8)

where

U1

vi

U2

Id) (B-9)

V2

- I is the displacement vector.
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The element stiffness matrix is then formed as

T
[k] = [B [B~d(Vol.) (B-10)

fVol.

where [C] is the element stiffness matrix as given in Appendix C.

-. _"- -+



APPENDIX C

GENERALLY ORTHOTROPIC STIFFNESS COEFFICIENTS

The C coefficients in the generally orthotropic stiffness matrix

in Eq.(B-1O) are listed below:

CI1 = U1 + U2 cos (20) + U3 cos (40)

C1 2  = U4 + U 3 cos (40)

C = cos 2 @ C13 + sin 2 e C23

C = C15 =0

C U2 sin(20) - U 3 sin (40)

C22 I - U2 cos(20) + U3 cos(48)

C sin 20 C + cos 20 C
23 13 23

C24  = 25 0

C26 = - U2 sin 29 + U3 sin(49)

C33 C 33
a3 = Ca = 0
C34 C35 0

C = sino cose C13 - sinO cosO C23

C44a cos 20 C44 + sin 20 C55

C45 sinO cosO C44 + sinO cosO C55

a46  =0

C = sin2 o C44 + cos2 O C55

C56 0

C6 6 = U5 -U 3 cos (4 0)



107

where

U = 1/8 (3Cli + 3C12 + 4C 66)

U2  = c( - )
211 22

U 1/8 (C + C - 2C - 4C)
3 11 22 12 66

U = 1/8 (C + C - 2C + 4C

U5  11 22 12 66

c11 = (1-v 23 v2 2) VE1 1

022 (1 - V3 1  13 E22

c33 (1 - v 1 2 v21) VE 33

C12  "(v21 + v2 3 v3 1) VE11 = ( 12 + v13 "329 VE2 2

C13 (v3 1 + v2 1 "32 
) VE11  (v13 + v23 v 12 VE33

= (32 + v12 V31) VE2 2 = (v23 + v2 1 v13) VE 33

C4 4  23

C55 G 31

C66 G 12

V U v(1- 12 v 2 1 -v 23 v32 -V 13 V3 1 - 12 v23 v31



APPENDIX D

INPUT INSTRUCTIONS
FOR NCLAP

Card 1 (80Al)

TITLE Problem title

Card 2 (1115)

NTP Total number of nodes

NTE Total number of elements

NPE Number of nodes per element

NMAT Number of materials

NLI Number of load incirements

NFIX Number of constrained nodes

NGAUS Number of integration points

ICHK 1 Check input data

= 0 No check

ISTR = 0 Print element average stresses

= 1 Print element stresses at every Gaus point

= 2 Full print out of stresses

IDIS = 0 No print out of displacements

= 1 Print accumulated displacements

= 2 Print incremental and accumulated
displacements
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THYG = I Print nodal temperatures and moisture
distribution

= 0 No hygrothermal information printed

Cards 3 (I015,FlO.0,15)

NF Element number

NOE Vector of element connectivity

IMAT Element material number

ANGLE Element material angle, i.e., angle between
principal direction I of the material and the

x-axis measured clockwise

IFLOD = 1 Mechanical load applied to elemcnt

= 0 No mechanical load applied

Cards 4 (15,5F10.0)

NP Node number

COORD Nodal coordinates (x,y,z)

STEMP Nodal temperature

SMOTS Nodal moisture content

Cards 5 (15,2X,311,3FI0.0)

NFIXP Constrained node number

CODE Vector of constraining code

= 1 Contrained displacement

0 No constraint

CDTS Prescribed displacements in x, y, and z directions
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Card 6 (15)

MAT Material number

Cards 7 (6EI0.4)

PROPS Material properties (see Table- 3,4)

Card 8 (212)

IMLD Mechanical loading flag

= 1 Increment contains applied mechanical load

= 0 No mechanical load

IHGR = 0 No hygrothermal load

= 1 Uniform change in hygrothermal loading

= -1 Hygrothermal distribution

Cards 9 (2F1O.0)

DTEMP Uniform applied temperature change

DMOIS Uniform applied moisture change

Card 10 (215)

NE Mechanically loaded element number

LNODS Number of nodes loaded

Cards 11 (15,3FI0.O)

LN Loaded node number

XL,YL,ZL x-load, y-load, and z-load



Note If IHGR on Card 8 is equal to -1,Cards 9 would then give

the change of temperature and moisture for all nodal

points ending with the last node. Cards 9 are omitted

totally if IHGR is zero.

ii

ml '



I


